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In this paper we devise a stabilized least-squares finite element method using the residual-
free bubbles for solving the governing equations of steady magnetohydrodynamic duct
flow. We convert the original system of second-order partial differential equations into a
first-order system formulation by introducing two additional variables. Then the least-
squares finite element method using C0 linear elements enriched with the residual-free
bubble functions for all unknowns is applied to obtain approximations to the first-order
system. The most advantageous features of this approach are that the resulting linear sys-
tem is symmetric and positive definite, and it is capable of resolving high gradients near
the layer regions without refining the mesh. Thus, this approach is possible to obtain
approximations consistent with the physical configuration of the problem even for high
values of the Hartmann number. Before incoorperating the bubble functions into the global
problem, we apply the Galerkin least-squares method to approximate the bubble functions
that are exact solutions of the corresponding local problems on elements. Therefore, we
indeed introduce a two-level finite element method consisting of a mesh for discretization
and a submesh for approximating the computations of the residual-free bubble functions.
Numerical results confirming theoretical findings are presented for several examples
including the Shercliff problem.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The purpose of this paper is to devise a stabilized least-squares finite element method using the residual-free bubble
functions for solving the magnetohydrodynamic (henceforth, MHD) duct flow problems. It is known that the problem of
the flow of viscous, incompressible, electrically conducting fluids in channels and ducts under a uniform oblique magnetic
field has many industrial applications in the field of magnetohydrodynamics. Therefore, it is an important research topic to
provide an effective numerical method for solving such duct flow problems for the sake of application.

There are many researches which use various numerical methods such as finite difference, finite element, and boundary
element methods for the MHD duct flow problems. We refer the reader to [21,22,24–26] and many references cited therein.
However, when the Hartmann number is large, such MHD duct flow problem is convection-dominated. It is well-known that
the solutions of convection-dominated problems can exhibit localized phenomena such as boundary and interior layers, i.e.,
narrow regions where the derivative of solution is very large. Therefore, most conventional numerical methods can not
efficiently solve the problem because they are lacking in either stability or accuracy. It was pointed out in [21,22] that
the common deficiency of the existing numerical methods for the MHD duct flow problem is that they produce physical
numerical results in several configurations of interest but the Hartmann number M cannot be increased more than about
. All rights reserved.
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102. However, from a practical point of view, the important range of the Hartmann number in industrial applications is
102
6 M 6 106.

One of the most successful class of methods for treating the convection-dominated problems is the stabilized finite ele-
ment methods. The subject of stabilized finite element methods has been intensively studied for more than twenty years and
it is still attractive today. See [12,18], a recent review by Franca et al. [15] and many references cited therein. In particular,
the residual-free bubble method which is a stabilized-like finite element method has been demonstrated to be efficient for
convection-dominated problems. Recently, Nesliturk and Tezer-Sezgin [21,22] showed that the stabilized finite element
method using the residual-free bubbles seems robust in MHD duct flow problems at high Hartmann numbers.

The residual-free bubble method is formulated by enriching the standard C0 linear finite element space with some spe-
cific bubble functions (see, e.g. [4–6,13]). Partitioning the domain into a mesh of elements, the residual-free bubble functions
are defined to be as rich as possible within an element. In other words, the bubble functions are required to satisfy some
corresponding local equation in the interior of each element, up to the contribution of the linear part, with a homogeneous
Dirichlet condition on the element boundary. However, an apparent disadvantage of this approach for convection-dominated
convection–diffusion problems is that the resulting linear system is not symmetric. Thus, some efficient and robust solvers
for linear systems such as the conjugate gradient method can not be applied.

On the other hand, for the past two decades, least-squares finite element methods (henceforth, LSFEMs) have become
more and more frequently used to approximate the solution of first-order system of partial differential equations arising
from fluid and solid mechanics. We refer the reader to [1,2,7,9–11,19,23] and many references therein. It is already known
that the most specific features of the least-squares finite element approach which give it advantages are that the resulting
linear system is symmetric and positive definite, and simple equal low-order finite elements such as the continuous linear
elements can be used for the approximation of all unknowns. Unfortunately, it is also known that the primitive LSFEM is not
able to achieve good performance for convection-dominated problems.

In the present paper, we will devise a novel least-squares finite element method stabilized with the residual-free bubble
functions for approximating the solution of the MHD duct flow problem, which is reformulated as a first-order system by
introducing two additional variables. The most distinguished features of this approach are that the resulting linear system
is symmetric and positive definite, and this approach is capable of resolving high gradients near the layer regions without
refining the mesh. Before incooperating the bubble functions into the global problem, we will apply the Galerkin least-
squares method [12,18] to approximate the bubble functions that are analytic solutions of the corresponding local problems
on elements. Therefore, we indeed introduce a two-level finite element method consisting of a mesh for discretization and a
submesh for approximating the computations of the residual-free bubbles (cf. [13]). We will show that this approach gives
more accurate and stable results even for high values of Hartmann number. Numerical results confirming theoretical find-
ings are presented for several examples including the Shercliff problem which possesses an analytic solution.

Now let us remark that the stabilized LSFEM using the residual-free bubbles has been applied to solve the 1-D single con-
vection–diffusion equation in the recent thesis of Kao [20]. Indeed, the basic idea in the work of [20] was initially suggested
by the second author of this paper. However a mathematical derivation of the bubble equation (cf. Section 4) corresponding
to the additional variable p :¼ u0 is lacking therein and hence the present work is aimed at meeting this need. We also extend
this bubble-stabilized least-squares approach to the coupled convection-dominated problems in higher dimensions. More-
over, based on our theoretical analysis and simulation results, we find that for achieving higher accuracy and stability, it is
more appropriate to replace the additional variable p :¼ u0 introduced in [20] by p :¼ ju0 (cf. Section 2).

The remainder of this paper is organized as follows. We derive the first-order system formulation for the MHD duct flow
problem in Section 2. In Section 3, we introduce the primitive LSFEM, where the continuity and coercivity estimates of the
method are established. The bubble-stabilized LSFEM is devised in Section 4 and the construction of residual-free bubble
functions is also reported therein. Numerical examples are given in Section 5 to demonstrate the effectiveness of the pro-
posed bubble-stabilized LSFEM. Finally, in Section 6, some conclusions are made.

2. Problem formulation

We study the problem of finding the velocity u and the induced magnetic field b for a laminar, fully developed flow of an
incompressible, viscous, electrically conducting fluid in a straight channel with uniform cross-section X. The fluid is driven
by a constant mechanical pressure gradient �dp=dz. The direction of the constant transverse external magnetic field b0 may
be arbitrary to the x-axis, and the fields u and b are parallel to the z-axis. We assume that the cross-section X is an open
bounded region in R2 with Lipschitz boundary @X.

The generalized governing equations for the above duct flow in dimensionless form with suitable boundary conditions
can be posed as follows [21,22,24]:
�jDuþ a � rb ¼ f in X;

�jDbþ a � ru ¼ g in X;

u ¼ 0 on @X;

b ¼ 0 on CD;

rb � n ¼ 0 on CN ;

8>>>>>><>>>>>>:
ð2:1Þ
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where the symbols D and r stand for the Laplacian and gradient operators, respectively; u ¼ uðx; yÞ and b ¼ bðx; yÞ are the
velocity and the induced magnetic field in the z-direction, respectively; 0 < j :¼ 1=M < 1 is the diffusivity coefficient and
M ¼ b0lðd=lÞ1=2 is the Hartmann number, where b0 is the intensity of the external magnetic field, l is the characteristic length
of the duct, d and l are the electric conductivity and coefficient of viscosity of the fluid respectively, and in industrial appli-
cations one typically has 102

6 M 6 106; a ¼ ð� sin a;� cos aÞ>;a is the angle between the externally applied magnetic field
b0 and the x-axis; f : X! R and g : X! R are given source terms; @X ¼ CD [ CN , where CD has a positive measure and
CD \ CN ¼£; n is the outward unit normal vector to @X.

In order to apply the least-squares finite element method to approximate the solution of problem (2.1), we have to con-
vert problem (2.1) into a first-order system formulation. Introducing two additional variables x and J by
x ¼ �jru on X;

J ¼ �jrb on X;
we can transform the problem (2.1) into the following form:
r � xþ a � rb ¼ f in X;
r � Jþ a � ru ¼ g in X;
xþ jru ¼ 0 in X;
Jþ jrb ¼ 0 in X;
u ¼ 0 on @X;
b ¼ 0 on CD;

J � n ¼ 0 on CN :

8>>>>>>>>>><>>>>>>>>>>:
ð2:2Þ
Before we go further, we need to introduce some function spaces. Throughout this paper, we will use standard notation and
definitions for the Sobolev spaces HmðXÞ for nonnegative integers m (cf. [3,16]). The associated inner product and norm are
denoted by ð�; �Þm and k � km, respectively. As usual, L2ðXÞ ¼ H0ðXÞ and H1

0ðXÞ ¼ fv 2 H1ðXÞ and v j@X ¼ 0g. We need the Hil-
bert space
Hðdiv; XÞ ¼ fq 2 ðL2ðXÞÞ2 and r � q 2 L2ðXÞg
with the following inner product and norm: for p;q 2 Hðdiv; XÞ,

ðp;qÞdiv :¼ ðp;qÞ0 þ ðr � p;r � qÞ0;

kqkdiv :¼ kqk2
0 þ kr � qk

2
0

� �1=2
:

In the analysis of the developed method, we will frequently use the following Green formula:
ðq;rvÞ0 þ ðr � q;vÞ0 ¼ ðq � n;vÞ0;@X; 8 q 2 Hðdiv; XÞ and v 2 H1ðXÞ: ð2:3Þ
As a consequence of the Green formula (2.3), for v 2 H1
0ðXÞ and c 2 H1ðXÞ, we have
ða � rc; vÞ0 ¼ ðrc;vaÞ0 ¼ ðva � n; cÞ0;@X � ðr � ðvaÞ; cÞ0 ¼ �ðr � ðvaÞ; cÞ0 ¼ �ða � rv; cÞ0: ð2:4Þ
We also need the following Poincaré–Friedrichs inequality [16]: there exists a constant Cpf > 0 such that
kvk0 6 Cpf krvk0; 8 v 2 H1ðXÞ and v ¼ 0 on CD: ð2:5Þ
3. The primitive least-squares finite element method

We first define the following four function spaces with respect to the four unknown variables ðu; b;x; JÞ of the boundary
value problem (2.2):
V ¼ H1
0ðXÞ;

C ¼ fc : c 2 H1ðXÞ and c ¼ 0 on CDg;
W ¼ Hðdiv; XÞ;
K ¼ fK : K 2 Hðdiv; XÞ and K � n ¼ 0 on CNg:

8>>>><>>>>: ð3:1Þ
Then define the L2 least-squares energy functional F : V � C �W �K ! R for the extended first-order problem (2.2) by
Fððv ; c;u;KÞ; ðf ; gÞÞ ¼ kr � uþ a � rc � fk2
0 þ kr � Kþ a � rv � gk2

0 þ kuþ jrv � 0k2
0 þ kKþ jrc � 0k2

0: ð3:2Þ
The energy functional Fð�; ðf ; gÞÞ is defined to be the sum of the square L2-norms of the residuals on the product function
space V � C �W �K. Thus, if ðu; b;x; JÞ 2 V � C �W �K is an exact solution of problem (2.2), then ðu; b;x; JÞ must be a zero
minimizer of the functional on V � C �W �K, namely,
Fððu; b;x; JÞ; ðf ; gÞÞ ¼ 0 ¼minfFððv ; c;u;KÞ; ðf ; gÞÞ : ðv ; c;u;KÞ 2 V � C �W �Kg:



8304 P.-W. Hsieh, S.-Y. Yang / Journal of Computational Physics 228 (2009) 8301–8320
Moreover, one can observe that for any given ðv ; c;u;KÞ 2 V � C �W �K;Fððu; b;x; JÞ þ eðv ; c;u;KÞ; ðf ; gÞÞ is a nonnegative
quadratic functional in the variable e 2 R. Therefore, we have
d
de
Fððu; b;x; JÞ þ eðv; c;u;KÞ; ðf ; gÞÞje¼0 ¼ 0
which is equivalent to
Bððu; b;x; JÞ; ðv ; c;u;KÞÞ ¼ Lððv; c;u;KÞÞ; 8 ðv ; c;u;KÞ 2 V � C �W �K; ð3:3Þ
where the bilinear form Bð�; �Þ and the linear form Lð�Þ are respectively defined as follows:
Bððu; b;x; JÞ; ðv; c;u;KÞÞ ¼
Z

X
ðr � xþ a � rbÞðr � uþ a � rcÞ þ ðr � Jþ a � ruÞðr � Kþ a � rvÞ

þ ðxþ jruÞ � ðuþ jrvÞ þ ðJþ jrbÞ � ðKþ jrcÞ dX;

Lððv; c;u;KÞÞ ¼
Z

X
f ðr � uþ a � rcÞ þ gðr � Kþ a � rvÞ dX:
We now consider the finite element formulation of the least-squares method (3.3) for problem (2.2). Let
Vh #V; Ch # C;Wh #W, and Kh #K be the standard finite element spaces consisting of continuous piecewise polynomials
with degree less or equal than r over a regular triangulation T h of the domain X. We denote by hT the diameter of element
T 2 T h and set h :¼maxT2T h

hT . The primitive LSFEM for problem (2.2) is then defined to be the following problem:
Seek ðuh; bh;xh; JhÞ 2 Vh � Ch �Wh �Kh such that
Bððuh; bh;xh; JhÞ; ðvh; ch;uh;KhÞÞ ¼ Lðvh; ch;uh;KhÞ; ð3:4Þ
for all ðvh; ch;uh;KhÞ 2 Vh � Ch �Wh �Kh.
Once the basis functions of the finite-dimensional space Vh � Ch �Wh �Kh are chosen, problem (3.4) is equivalent to

solve a linear system problem, An ¼ b, where unknown vector n consists the coordinates of the least-squares finite element
solution ðuh; bh;xh; JhÞ with respect to the chosen basis functions.

The unique solvability of problem (3.4) and error estimates of the least-squares finite element solution ðuh; bh;xh; JhÞ
mainly depend on the continuity and coercivity estimates of the bilinear form B. Before we derive the estimates, we remark
that
Bððv ; c;u;KÞ; ðv ; c;u;KÞÞ ¼ Fððv ; c;u;KÞ; 0Þ; 8 ðv ; c;u;KÞ 2 V � C �W �K: ð3:5Þ
Theorem 3.1. Consider the homogeneous L2 least-squares energy functional Fð�; 0Þ over the product space V � C �W �K. Then
there exist two positive constants C1 and C2 both independent of j such that for any ðv ; c;u;KÞ 2 V � C �W �K we have
Fððv ; c;u;KÞ; 0Þ 6 C1 kvk2
1 þ kck

2
1 þ kuk

2
div þ kKk

2
div

� �
; ð3:6Þ

Fððv ; c;u;KÞ; 0ÞP C2j2 kvk2
1 þ kck

2
1 þ kuk

2
div þ kKk

2
div

� �
: ð3:7Þ
Proof. The continuity estimate (3.6) follows directly from the triangle inequality. We will show the validity of coercivity
estimate (3.7). Let a be a positive parameter that will be determined later. Utilizing 2.3, 2.4 and 2.5, we have
Fððv ; c;u;KÞ; 0Þ ¼ kr � uþ a � rc � avk2
0 þ 2aðr � uþ a � rc; vÞ0 � a2kvk2

0 þ kr � Kþ a � rv � ack2
0

þ 2aðr � Kþ a � rv ; cÞ0 � a2kck2
0 þ kuþ jrv � arvk2

0 þ 2aðuþ jrv ;rvÞ0

� a2krvk2
0 þ kKþ jrc � arck2

0 þ 2aðKþ jrc;rcÞ0 � a2krck2
0

P 2aðr � uþ a � rc;vÞ0 � a2kvk2
0 þ 2aðr � Kþ a � rv; cÞ0 � a2kck2

0

þ 2aðuþ jrv ;rvÞ0 � a2krvk2
0 þ 2aðKþ jrc;rcÞ0 � a2krck2

0

¼ �a2kvk2
0 � a2kck2

0 þ 2ajkrvk2
0 � a2krvk2

0 þ 2ajkrck2
0 � a2krck2

0

P a 2j� a 1þ C2
pf

� �� �
krvk2

0 þ krck2
0

� �
:

Taking a ¼ j= 1þ C2
pf

� �
< 1, we obtain
Fððv ; c;u;KÞ; 0ÞP j2

1þ C2
pf

krvk2
0 þ krck2

0

� �
;
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which implies
krvk2
0 6

1þ C2
pf

j2 Fððv ; c;u;KÞ; 0Þ;

krck2
0 6

1þ C2
pf

j2 Fððv; c;u;KÞ; 0Þ:
Then, it follows from the Poincaré–Friedrichs inequality (2.5) that
kvk2
1 ¼ kvk

2
0 þ krvk2

0 6 1þ C2
pf

� �
krvk2

0 6

1þ C2
pf

� �2

j2 Fððv ; c;u;KÞ; 0Þ: ð3:8Þ
On the other hand, we have
kuk2
div ¼ kuk

2
0 þ kr � uk

2
0 ¼ kuþ jrv � jrvk2

0 þ kr � uþ a � rc � a � rck2
0

6 2 kuþ jrvk2
0 þ kjrvk2

0 þ kr � uþ a � rck2
0 þ ka � rck2

0

� �
6 C Fððv ; c;u;KÞ; 0Þ þ 1

j2 Fððv ; c;u;KÞ; 0Þ
� �

6
2C
j2 Fððv ; c;u;KÞ; 0ÞÞ; ð3:9Þ
where C is some positive constant independent of j. Applying the same techniques, we can prove that
kck2
1 6

1þ C2
pf

� �2

j2 Fððv ; c;u;KÞ; 0Þ; ð3:10Þ

kKk2
div 6

2C
j2 Fððv ; c;u;KÞ; 0Þ: ð3:11Þ
Finally, combining (3.8)–(3.10) and (3.11) we obtain (3.7). This completes the proof. h

Based on the coercivity estimate (3.7) of the bilinear form B, one can easily verify that the matrix A of the linear system
An ¼ b is symmetric and positive definite, which implies that problem (3.4) has a unique solution. We refer the reader to [19]
for more details. Furthermore, we have the following error estimate for the least-squares finite element solution
ðuh; bh;xh; JhÞ:

Theorem 3.2. Assume that ðu; b;x; JÞ 2 ðV � C �W �KÞ \ ðHrþ1ðXÞÞ6 is the exact solution of problem (2.2). Then the least-
squares finite element solution ðuh; bh;xh; JhÞ 2 Vh � Ch �Wh �Kh satisfies the following estimate:
jðku� uhk1 þ kb� bhk1 þ kx� xhkdiv þ kJ� JhkdivÞ 6 Chrðkukrþ1 þ kbkrþ1 þ kxkrþ1 þ kJkrþ1Þ; ð3:12Þ
where C is a positive constant independent of j and h.

Proof. Let uI 2 Vh; bI 2 Ch;xI 2 Wh and JI 2 Kh be the interpolants of u; b;x and J, respectively. Then from the approximation
theory, we have
ku� uIk1 6 Chrkukrþ1;

kb� bIk1 6 Chrkbkrþ1;

kx� xIkdiv 6 Chrkxkrþ1;

kJ� JIkdiv 6 ChrkJkrþ1:

8>>><>>>: ð3:13Þ
Now let U :¼ ðu; b;x; JÞ;Uh :¼ ðuh; bh;xh; JhÞ and UI :¼ ðuI; bI;xI; JIÞ. By (3.3) and (3.4), we have the following orthogonality
property
BðU � Uh;VhÞ ¼ 0; 8 Vh :¼ ðvh; ch;uh;KhÞ 2 Vh � Ch �Wh �Kh:
Based on this property with the Cauchy–Schwarz inequality, we obtain
BðU � Uh;U � UhÞ ¼ BðU � Uh;U � UIÞ 6 B1=2ðU � Uh;U � UhÞB1=2ðU � UI;U � UIÞ;
and then
B1=2ðU � Uh;U � UhÞ 6 B1=2ðU � UI;U � UIÞ: ð3:14Þ
Now combining (3.14) with Theorem 3.1 and the approximation properties (3.13) yields the conclusion (3.12). This com-
pletes the proof. h

From the error estimate (3.12), we can easily find that when j is sufficiently small, the primitive LSFEM may perform
poorly in practice. This observation has been confirmed by our numerical experiments reported in Section 5. In order to im-
prove the performance of primitive LSFEM, we are going to introduce a bubble-stabilized LSFEM in the next section.
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4. A bubble-stabilized least-squares finite element method

In this section, we will introduce a stabilized LSFEM using the residual-free bubble functions to solve the steady MHD
duct flow in the first-order system formulation (2.2). We first construct the residual-free bubble functions for the variables
u and b. Define the following notation:
D :¼
�jD a � r
a � r �jD

� �
; eUh :¼

uh

bh

� �
; R :¼

f

g

� �
:

Suppose that the first two components uh and bh of stabilized least-squares solution ðuh; bh;xh; JhÞ have the formeUh ¼ eU1 þ eUb, where eU1 is the continuous piecewise linear part and eUb is the bubble part. For each element T 2 T h, we
require
DðeU1 þ eUbÞ ¼ R in T;eUb ¼ 0 on @T:

(

We call eUb a residual-free bubble function on T since R�DðeU1 þ eUbÞ ¼ 0 in T and eUbj@T ¼ 0. To solve the above problem foreUb, we assume that
eU1 ¼
X

i2Iðu;bÞ
aiWi;
where Wi’s are the basis functions of eU1 and Iðu; bÞ denotes the associated index set. Then by solving
DUi;T ¼ �DWi in T;

Ui;T ¼ 0 on @T;

�
ð4:1Þ
and
DUR;T ¼ R in T;

UR;T ¼ 0 on @T;

�
ð4:2Þ
for all T 2 T h, we have
eUb ¼
X

i2Iðu;bÞ
aiUi þUR;
which implies that
eUh ¼
X

i2Iðu;bÞ
aiðWiþUiÞ þUR; ð4:3Þ
where Ui :¼
P

TUi;T and UR :¼
P

TUR;T .
Next, we construct the residual-free bubbles for the variables x and J. Suppose that the solution ðu; bÞ of problem (2.1) is

sufficiently smooth. Since
Fig. 5.1. Boundary conditions of the Shercliff problem.
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Meth

Prim
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r � xþ a � � 1
j J

	 

¼ f in X;

r � Jþ a � � 1
j x

	 

¼ g in X;

(

we obtain
rð�jr � xþ a � JÞ ¼ �jrf in X;

rð�jr � Jþ a � xÞ ¼ �jrg in X:

�

Utilizing the fact that r� x ¼ r� J ¼ 0 in X, namely,
@x2

@x
¼ @x1

@y
and

@J2

@x
¼ @J1

@y
in X;
we have
�jDx1 þ a � rJ1 ¼ �j @f
@x in X;

�jDJ1 þ a � rx1 ¼ �j @g
@x in X;

(
�jDx2 þ a � rJ2 ¼ �j @f

@y in X;

�jDJ2 þ a � rx2 ¼ �j @g
@y in X:

(

Define the following notation:
fW 1
h :¼

x1h

J1h

" #
and Rx :¼

�j @f
@x

�j @g
@x

" #
;

fW 2
h :¼

x2h

J2h

" #
and Ry :¼

�j @f
@y

�j @g
@y

24 35:
.1
uares finite element solutions for the Shercliff problem with j ¼ 1=100.

od x y uh uexact bh bexact

itive LSFEM 0.00 0.00 0.0088870 0.0100000 0.0000000 0.0000000
0.25 0.00 0.0088869 0.0100000 �0.0024943 �0.0025000
0.50 0.00 0.0088868 0.0100000 �0.0049886 �0.0050000
0.75 0.00 0.0088866 0.0100000 �0.0074829 �0.0075000
0.00 0.25 0.0088832 0.0100000 0.0000000 0.0000000
0.25 0.25 0.0088836 0.0100000 �0.0024950 �0.0025000
0.50 0.25 0.0088850 0.0100000 �0.0049901 �0.0050000
0.75 0.25 0.0088868 0.0099999 �0.0074852 �0.0074999
0.00 0.50 0.0089074 0.0099992 0.0000000 0.0000000
0.25 0.50 0.0089062 0.0099981 �0.0024977 �0.0024982
0.50 0.50 0.0089029 0.0099944 �0.0049916 �0.0049944
0.75 0.50 0.0088977 0.0099868 �0.0074784 �0.0074868
0.00 0.75 0.0088933 0.0097614 0.0000000 0.0000000
0.25 0.75 0.0088468 0.0097163 �0.0022393 �0.0023030
0.50 0.75 0.0087086 0.0095858 �0.0044826 �0.0046024
0.75 0.75 0.0084850 0.0093863 �0.0067255 �0.0068869

ilized LSFEM 0.00 0.00 0.0096485 0.0100000 0.0000000 0.0000000
0.25 0.00 0.0096467 0.0100000 �0.0024848 �0.0025000
0.50 0.00 0.0096414 0.0100000 �0.0049694 �0.0050000
0.75 0.00 0.0096332 0.0100000 �0.0074538 �0.0075000
0.00 0.25 0.0096626 0.0100000 0.0000000 0.0000000
0.25 0.25 0.0096594 0.0100000 �0.0024776 �0.0025000
0.50 0.25 0.0096500 0.0100000 �0.0049549 �0.0050000
0.75 0.25 0.0096351 0.0099999 �0.0074318 �0.0074999
0.00 0.50 0.0096978 0.0099992 0.0000000 0.0000000
0.25 0.50 0.0096888 0.0099981 �0.0024474 �0.0024982
0.50 0.50 0.0096616 0.0099944 �0.0048940 �0.0049944
0.75 0.50 0.0096175 0.0099868 �0.0073393 �0.0074868
0.00 0.75 0.0092838 0.0097614 0.0000000 0.0000000
0.25 0.75 0.0092615 0.0097163 �0.0023504 �0.0023030
0.50 0.75 0.0091937 0.0095858 �0.0046990 �0.0046024
0.75 0.75 0.0090788 0.0093863 �0.0070441 �0.0068869
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Suppose that the components fW i
h of stabilized least-squares solution ðuh; bh;xh; JhÞ have the form fW i

h ¼ fW i
1 þ fW i

b for i ¼ 1;2,
where fW i

1 is the linear part and fW i
b is the bubble part. Similar to the construction of residual-free bubble functions for the

variables u and b, we require for each element T 2 T h
Table 5
Least-sq

Meth

Prim

Stab
D fW 1
1 þ fW 1

b

� �
¼ Rx in T;fW 1

b ¼ 0 on @T;

8<:

and
.2
uares finite element solutions for the Shercliff problem with j ¼ 1=500.

od x y uh uexact bh bexact

itive LSFEM 0.00 0.00 0.0007263 0.0020000 0.0000000 0.0000000
0.25 0.00 0.0007263 0.0020000 �0.0004976 �0.0005000
0.50 0.00 0.0007264 0.0020000 �0.0009953 �0.0010000
0.75 0.00 0.0007263 0.0020000 �0.0014927 �0.0015000
0.00 0.25 0.0007266 0.0020000 0.0000000 0.0000000
0.25 0.25 0.0007266 0.0020000 �0.0004976 �0.0005000
0.50 0.25 0.0007265 0.0020000 �0.0009953 �0.0010000
0.75 0.25 0.0007264 0.0020000 �0.0014927 �0.0015000
0.00 0.50 0.0007235 0.0020000 0.0000000 0.0000000
0.25 0.50 0.0007237 0.0020000 �0.0004988 �0.0005000
0.50 0.50 0.0007243 0.0020000 �0.0009976 �0.0010000
0.75 0.50 0.0007251 0.0020000 �0.0014963 �0.0015000
0.00 0.75 0.0007476 0.0020000 0.0000000 0.0000000
0.25 0.75 0.0007461 0.0019999 �0.0004883 �0.0004999
0.50 0.75 0.0007419 0.0019997 �0.0009756 �0.0009997
0.75 0.75 0.0007356 0.0019992 �0.0014592 �0.0014992

ilized LSFEM 0.00 0.00 0.0019588 0.0020000 0.0000000 0.0000000
0.25 0.00 0.0019584 0.0020000 �0.0004970 �0.0005000
0.50 0.00 0.0019572 0.0020000 �0.0009941 �0.0010000
0.75 0.00 0.0019555 0.0020000 �0.0014911 �0.0015000
0.00 0.25 0.0019590 0.0020000 0.0000000 0.0000000
0.25 0.25 0.0019585 0.0020000 �0.0004968 �0.0005000
0.50 0.25 0.0019571 0.0020000 �0.0009936 �0.0010000
0.75 0.25 0.0019550 0.0020000 �0.0014904 �0.0015000
0.00 0.50 0.0019599 0.0020000 0.0000000 0.0000000
0.25 0.50 0.0019592 0.0020000 �0.0004960 �0.0005000
0.50 0.50 0.0019570 0.0020000 �0.0009920 �0.0010000
0.75 0.50 0.0019536 0.0020000 �0.0014880 �0.0015000
0.00 0.75 0.0019623 0.0020000 0.0000000 0.0000000
0.25 0.75 0.0019612 0.0019999 �0.0004944 �0.0004999
0.50 0.75 0.0019577 0.0019997 �0.0009888 �0.0009997
0.75 0.75 0.0019515 0.0019992 �0.0014832 �0.0014992

Fig. 5.2. Boundary conditions of Example 5.2.
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D fW 2
1 þ fW 2

b

� �
¼ Ry in T;fW 2

b ¼ 0 on @T:

8<:

Then we can derive from the similar arguments that
fW 1
h ¼

X
i2Iðx1 ;J1Þ

biðWi þUiÞ þURx ; ð4:4Þ

fW 2
h ¼

X
i2Iðx2 ;J2Þ

ciðWi þUiÞ þURy ; ð4:5Þ
where URx :¼
P

TURx ;T ;URy :¼
P

TURy ;T ; Iðx1; J1Þ and Iðx2; J2Þ denote the associated index sets.
Combining (4.3) and (4.4) with (4.5), we conclude that the stabilized least-squares solution can be expressed in the form
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Fig. 5.3. Numerical solutions obtained by the bubble-stabilized LSFEM for Example 5.2 with j ¼ 10�4 and a ¼ p=4.
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uh

bh

x1h

J1h

x2h

J2h

2666666664

3777777775
¼
X

i2Iðu;bÞ
ai

Wi þUi

0
0

264
375þ X

i2Iðx1 ;J1Þ
bi

0
Wi þUi

0

264
375þ X

i2Iðx2 ;J2Þ
ci

0
0

Wi þUi

264
375þ UR

URx

URy

264
375:
We then define a finite-dimensional space Vh for the approximate solution ðuh; bh;x1h; J1h;x2h; J2hÞ
> of problem (2.2) by
Vh ¼ span
Wi þUi

0
0

264
375; 0

Wj þUj

0

264
375; 0

0
Wk þUk

264
375 : i 2 Iðu; bÞ; j 2 Iðx1; J1Þ; k 2 Iðx2; J2Þ

8><>:
9>=>;:
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Fig 5.3. (continued)
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Now we set a permutation function P by
Pððv1;v2; v3;v4; v5;v6Þ>Þ ¼ ðv1;v2; v3;v5; v4;v6Þ>:
Then the enriched finite-dimensional space eVh for problem (2.2) is defined by
eVh ¼ PðVhÞ;
and the bubble-stabilized LSFEM is defined as the following problem:
Seek ðuh; bh;xh; JhÞ :¼ ~uh;

~bh; ~xh;eJh

� �
þ PððUR;URx ;URy Þ

>Þ, where ~uh;
~bh; ~xh;eJh

� �
2 eVh such that
Bððuh; bh;xh; JhÞ; ð~vh; ~ch; ~uh; eKhÞÞ ¼ L ~vh; ~ch; ~uh; eKh

� �
; ð4:6Þ
for all ~vh; ~ch; euh; eKh

� �
2 eVh.
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Fig. 5.4. Numerical solutions obtained by the bubble-stabilized LSFEM for Example 5.2 with j ¼ 10�4 and a ¼ p=3.
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Again, one can easily verify that problem (4.6) is equivalent to a linear system problem in which the associated matrix is
symmetric and positive definite. Consequently, problem (4.6) possesses an unique solution. Moreover, the coercivity esti-
mate (3.7) provides the numerical stability of the bubble-stabilized LSFEM (4.6).

Finally, as an example, we explain some details for resolving the problem (4.1). For
Wi ¼
wi

0

� �
or Wi ¼

0
wi

� �
; i 2 Iðu; bÞ;
where wi’s are the continuous piecewise linear basis functions, problem (4.1) can be rewritten as follows:
�jD/u
i;T þ a � r/b

i;T ¼ �ð�jDwiÞ in T;

�jD/b
i;T þ a � r/u

i;T ¼ �ða � rwiÞ in T;

/u
i;T ¼ /b

i;T ¼ 0 on @T;

8>><>>: ð4:7Þ
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Fig 5.4. (continued)



bubble−stabilized LSFEM: uh•1•4.600.61•1•4.600.612468x 10•6•1 0
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x 10•4xbubble•stabilized LSFEM: bhy
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�jDuu
i;T þ a � rub

i;T ¼ �ða � rwiÞ in T;

�jDub
i;T þ a � ruu

i;T ¼ �ð�jDwiÞ in T;

uu
i;T ¼ ub

i;T ¼ 0 on @T:

8>><>>: ð4:8Þ
Now define
�Si;T :¼ /u
i;T þ /b

i;T and �Ni;T :¼ /u
i;T � /b

i;T ;

Si;T :¼ uu
i;T þub

i;T and Ni;T :¼ uu
i;T �ub

i;T :
Then both problems (4.7) and (4.8) can be decoupled into two single-equation convection-dominated problems:
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�jD�Si;T þ a � r�Si;T ¼ �ð�jDwi þ a � rwiÞ in T;
�Si;T ¼ 0 on @T;

(
ð4:9Þ

�jD�Ni;T � a � r�Ni;T ¼ �ð�jDwi � a � rwiÞ in T;
�Ni;T ¼ 0 on @T;

(
ð4:10Þ
and
�jDSi;T þ a � rSi;T ¼ �ð�jDwi þ a � rwiÞ in T;

Si;T ¼ 0 on @T;

�
ð4:11Þ

�jDNi;T � a � rNi;T ¼ �jDwi � a � rwi in T;

Ni;T ¼ 0 on @T:

�
ð4:12Þ
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Fig 5.5. (continued)



Comparing problems (4.9) with (4.11) and (4.10) with (4.12), one can find that Si;T ¼ �Si;T and Ni;T ¼ ��Ni;T . Hence, we have
Ui;T ¼
/u

i;T

/b
i;T

" #
¼ 1

2

�Si;T þ �Ni;T

�Si;T � �Ni;T

" #

or
Ui;T ¼
uu

i;T

ub
i;T

" #
¼ 1

2

�Si;T � �Ni;T

�Si;T þ �Ni;T

" #
:

Notice that Dwi ¼
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Example 5.1 (The Shercliff problem). This is an example with an analytic solution whose numerical data are available in
[21], so that we can compare our numerical results with the exact solution. In this example, the walls of the channel are
insulated, i.e., b ¼ 0 on @X, and the velocity is zero on the solid walls, i.e., u ¼ 0 on @X. The external magnetic field is
perpendicular to the x-axis ða ¼ p=2Þ, see Fig. 5.1. The right-hand side source functions in problem (2.2) are given by f ¼ j
and g ¼ 0.

In Tables 5.1 and 5.2, we compare the approximate solutions generated by the primitive LSFEM and the bubble-stabilized
LSFEM with the exact solution for Hartmann numbers M ¼ 100 and M ¼ 500, respectively, at several grid points in the first
quadrant of the channel. One can find that the primitive LSFEM is not able to achieve acceptable results even for such rel-
atively small Hartmann numbers. Indeed, its performance is getting worse when M is getting larger. However, the bubble-
stabilized LSFEM exhibits accurate and stable results that are comparable with the exact solution. The superior performance
of the bubble-stabilized LSFEM will be demonstrated in the next two examples, where we consider much larger Harmann
numbers, e.g. M ¼ 1=j ¼ 104;106.
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Fig. 5.7. Numerical solutions obtained by the bubble-stabilized LSFEM for Example 5.3 with j ¼ 10�4.
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Example 5.2 (The 2D square-channel flow with an oblique applied magnetic field). We consider the same problem with
Example 5.1, except the externally applied magnetic field makes various positive angles a with the x-axis (see Fig. 5.2) and
j ¼ 10�4. Numerical computations are carried out for values of a ¼ p=4;p=3 and p=2, respectively. The elevation and
contour plots for approximate solutions generated by the bubble-stabilized LSFEM are depicted in Figs. 5.3, 5.4 and 5.5. One
can observe that when the external magnetic field applies obliquely, the boundary layers are concentrated near the corners
in the direction of the field for both solutions u and b. This is a well-known behavior of the MHD flow [21].
Example 5.3 (The 2D square-channel flow driven by the current produced by electrodes). We examine the MHD flow in the 2D
square-channel driven by the current produced by electrodes, placed one in each of the walls of the duct where the applied
magnetic field b0 is perpendicular (see Fig. 5.6). In this example, f ¼ g ¼ 0. The boundary conditions are given by
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u ¼ 0 on @X;

b ¼ p on fðx; yÞ 2 @X : x > ‘; y ¼ �1g [ fðx; yÞ : x ¼ 1;�1 6 y 6 1g;
b ¼ �p on fðx; yÞ 2 @X : x < �‘; y ¼ �1g [ fðx; yÞ : x ¼ �1;�1 6 y 6 1g;
J � n ¼ 0 on fðx; yÞ 2 @X : �‘ 6 x 6 ‘; y ¼ �1g:

8>>><>>>:

In numerical computations, we set ‘ ¼ 0:3; p ¼ 1 and then consider j ¼ 10�4 and j ¼ 10�6, respectively. The elevation

and contour plots for approximate solutions generated by the bubble-stabilized LSFEM are displayed in Figs. 5.7 and 5.8.
It can be observed, from these figures, that boundary layer formation makes a strong appearance for u; b;x1 and J1. Though
the approximate solutions uh and bh exhibit a little bit oscillatory behavior near the boundaries y ¼ �1, the bubble-stabilized
LSFEM still presents an attractive performance for high Hartmann number at least up to M ¼ 106 (i.e., j ¼ 10�6).
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Fig. 5.8. Numerical solutions obtained by the bubble-stabilized LSFEM for Example 5.3 with j ¼ 10�6.
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6. Summary and conclusions

In this paper, we have proposed a novel stabilized least-squares finite element method using the residual-free bubble
functions for approximating the solution of the MHD duct flow at high Hartmann number, which is a convection-dominated
convection–diffusion problem. The most distinguished features of this approach are that the resulting linear system is sym-
metric and positive definite, and this bubble-stabilized LSFEM is capable of resolving high gradients near the layer regions
without refining the mesh. We have shown that this approach gives more accurate and stable results even for high values of
the Hartmann number. Numerical results are presented for several examples including the Shercliff problem which pos-
sesses an analytic solution.

In order to gain the residual-free bubble functions, the Galerkin least-squares method is applied to solve the correspond-
ing local problems on elements. Therefore, we indeed have introduced a two-level finite element method consisting of a
mesh for discretization and a submesh for approximating the computations of the residual-free bubbles. Apparently, the
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approximations of the bubble functions can be obtained simultaneously by using parallel computations to accelerate the
solution process.

Recently, the multiscale finite element approach [17] has been applied to the single-equation convection-dominated
problems (cf. [8,14]). This approach is designed to efficiently capture the large scale behavior of the solution without resolv-
ing all the small scale features. This is accomplished by constructing the multiscale finite element basis functions that are
adaptive to the local property of the differential operator [17]. This methodology is very close to the finite element method
enriched with the bubble functions and clearly, the underlying idea can be employed for solving the MHD duct flow prob-
lems. A further study in this direction is in progress and we will report the results elsewhere.
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